3 resultados para ELEVATED BLOOD LEAD

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7-9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041+/-0.018 at sea-level to 0.080+/-0.018%hr(-1) (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052+/-0.019 at sea-level to 0.059+/-0.010%hr(-1) (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51+/-0.21 at sea level to 2.73+/-0.13 micromolkg(-1)min(-1) (p = 0.05) at high altitude and synthesis rate similar; 2.24+/-0.20 at sea level and 2.43+/-0.13 micromolkg(-1)min(-1) (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Chronic hypoxia is associated with elevated sympathetic activity and hypertension in patients with chronic pulmonary obstructive disease. However, the effect of chronic hypoxia on systemic and regional sympathetic activity in healthy humans remains unknown. To determine if chronic hypoxia in healthy humans is associated with hyperactivity of the sympathetic system, we measured intra-arterial blood pressure, arterial blood gases, systemic and skeletal muscle noradrenaline (norepinephrine) spillover and vascular conductances in nine Danish lowlanders at sea level and after 9 weeks of exposure at 5260 m. Mean blood pressure was 28 % higher at altitude (P < 0.01) due to increases in both systolic (18 % higher, P < 0.05) and diastolic (41 % higher, P < 0.001) blood pressures. Cardiac output and leg blood flow were not altered by chronic hypoxia, but systemic vascular conductance was reduced by 30 % (P < 0.05). Plasma arterial noradrenaline (NA) and adrenaline concentrations were 3.7- and 2.4-fold higher at altitude, respectively (P < 0.05). The elevation of plasma arterial NA concentration was caused by a 3.8-fold higher whole-body NA release (P < 0.001) since whole-body noradrenaline clearance was similar in both conditions. Leg NA spillover was increased similarly (x 3.2, P < 0.05). These changes occurred despite the fact that systemic O2 delivery was greater after altitude acclimatisation than at sea level, due to 37 % higher blood haemoglobin concentration. In summary, this study shows that chronic hypoxia causes marked activation of the sympathetic nervous system in healthy humans and increased systemic arterial pressure, despite normalisation of the arterial O2 content with acclimatisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] BACKGROUND: A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied. METHODS AND RESULTS: To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10 degrees C and +1 degrees C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4+/-0.1 L/min (8%), 0.5+/-0.2 L/min (11%), and 2.2+/-0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis. CONCLUSIONS: These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle.